Photoinduced electron transfer of platinum(II) bipyridine diacetylides linked by triphenylamine- and naphthaleneimide-derivatives and their application to photoelectric conversion systems.
نویسندگان
چکیده
The recently reported efficient charge-separated system based on bipyridine-diacetylide platinum(ii) complexes was applied to photoelectric conversion systems herein, based on the design and synthesis of two triads: MTA-Pt-NDISAc (3, MTA: dimethoxytriphenylamine, Pt: platinum(ii) complex, NDISAc: thioacetate derivative linked to naphthalenediimide) and MTA-Pt-MNICOOH (4, MNICOOH: naphthaleneimide-4-carboxylic acid). The charge-separated (CS) states of triads 3 and 5 (MOM-protected 4) were effectively generated by photo-induced electron transfer in both THF and toluene, although the rate of formation of the CS state from 5 was relatively slow in toluene. The lifetimes of these CS states were determined to be 730 ns in toluene and 61 ns (70%) and 170 ns (30%) as a double exponential decay in THF for 3, and 600 ns in toluene and 170 ns in THF for 5. The acetylthio group of triad 3 was exploited in the preparation of a self-assembled monolayer (SAM) on a gold surface. Photocurrent was detected upon irradiation of an electrochemical cell comprising Au/3/Na ascorbate/Pt, which was ascribed to the platinum(ii) complex based on the action spectrum. The carboxylic acid group of triad 4 facilitated adsorption on the TiO2 surface, and a dye-sensitized solar cell constructed based on FTO/TiO2/4/electrolyte (LiI-I2)/Pt exhibited a poor energy conversion efficiency (η = 0.20%) based on the incident photon-to-current conversion efficiency spectrum and the I-V curve. This poor efficiency may be derived from the bent molecular shape of 4, or may be due to a possible high energy barrier in the electron injection process through the adsorption site.
منابع مشابه
Syntheses, characterization, and photo-hydrogen-evolving properties of tris(2,2'-bipyridine)ruthenium(II) derivatives tethered to an H2-evolving (2-phenylpyridinato)platinum(II) unit.
With the aim of developing new molecular devices having higher photo-hydrogen-evolving activity, Pt(ppy)ClX units (ppy = 2-phenylpyridinate, X = Cl(-) or DMSO; DMSO = dimethylsulfoxide) have been employed as an H(2)-evolving site, as the catalytic activity of [Pt(ppy)Cl(2)](-) was confirmed to be higher than those of other mononuclear platinum(II) complexes. In the present study, two new hetero...
متن کاملSimple Synthesis of In2S3 Nanoparticles and their Application as Co-sensitizer to Improve Energy Conversion of DSSCs
This paper describes synthesis of In2S3 nanoparticles by sonochemistry method and their application to enhance solar cells performance which In2S3 nanoparticles work as co-sensitizer for the first time. In2S3 is a narrow band gap semiconductor (2 eV) with conduction band higher than TiO2. Therefore it can transfer electron to the conduction band of TiO2. The effect of different parameters such ...
متن کاملSynthesis and photoinduced electron transfer in platinum(II) bis(N-(4-ethynylphenyl)carbazole)bipyridine fullerene complexes.
Platinum(ii) bis(N-(4-ethynylphenyl)carbazole)bipyridine fullerene complexes, (Cbz)2-Pt(bpy)-C60 and ((t)BuCbz)2-Pt(bpy)-C60, were synthesized. Their photophysical properties were studied by electronic absorption and emission spectroscopy and the origin of the transitions was supported by computational studies. The electrochemical properties were also studied and the free energies for charge-se...
متن کاملGeometric influence on intramolecular photoinduced electron transfer in platinum(II) acetylide-linked donor-acceptor assemblies.
A new donor-acceptor system, in which the electron donor triphenylamine (TPA) and the electron acceptor C60 are bridged through a cis- or trans-platinum(II) acetylide spacer have been prepared. Ground-state studies were conducted using electrochemistry and UV/Vis spectroscopy. Fluorescence studies suggested that charge transfer is the deactivation mechanism for the singlet excited state, and th...
متن کاملTuning of the Photoinduced Charge Transfer Process in Donor- Acceptor “Double Cable” Copolymers
The covalent linking of acceptor molecules to electron donating conjugated polymer is an approach for the development of new photoactive materials for the fabrication of organic photoelectric conversion devices. With this strategy we have designed a polyalkylthiophene copolymer series containing in the side chain anthraquinone molecules as electron acceptor. The peculiar features of the copolym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 21 شماره
صفحات -
تاریخ انتشار 2013